단행본
처음 배우는 인공지능: 개발자를 위한 인공지능 알고리즘과 인프라 기초
- 저자
- 다다 사토시 지음;, 송교석 옮김
- 발행사항
- 서울: 한빛미디어, 2017
- 형태사항
- 412 p: 삽화, 도표, 24 cm
- 일반주기
- 감수: 이시 가즈오(石井一夫) 색인수록 원저자명: 多田智史 일본어 원작을 한국어로 번역
- 비통제주제어
- 인공 지능[人工知能]
소장정보
위치 | 등록번호 | 청구기호 / 출력 | 상태 | 반납예정일 |
---|---|---|---|---|
이용 가능 (1) | ||||
한국청소년정책연구원 | 00029786 | 대출가능 | - |
이용 가능 (1)
- 등록번호
- 00029786
- 상태/반납예정일
- 대출가능
- -
- 위치/청구기호(출력)
- 한국청소년정책연구원
책 소개
머신러닝과 딥러닝 시대에 맞는 인공지능 개론
빅데이터가 축적되면서 머신러닝과 딥러닝 기술이 발전했고 개발자가 실제로 구현할 수 있는 프레임워크나 라이브러리가 등장했다. 전 세계 일류 IT 기업은 이러한 기술을 접목해 인공지능 서비스를 발표하고 있으며 앞으로는 더욱 향상된 인공지능 서비스가 등장할 것이다.
『처음 배우는 인공지능』은 ‘넓게, 하지만 절대 얕지는 않게’ 개발자에게 꼭 필요한 인공지능의 기초 이론을 알려주는 개론서다. 통계 이론, 머신러닝, 딥러닝, 신경망, 강화 학습, 자연어 처리 등 오늘날 인공지능 서비스 구축에 필요한 핵심 이론과 알고리즘을 설명한다. 또한 분산 컴퓨팅과 사물인터넷 등 인공지능에 필요한 인프라 기초도 다루므로 분야 전체의 개념을 이해하고 싶은 사람에게 도움이 될 것이다.
목차
Chapter 1 인공지능의 과거, 현재, 미래
__01 인공지능이란
__02 인공지능의 여명기
__03 인공지능의 발전 흐름
Chapter 2 규칙 기반 모델의 발전
__01 규칙 기반 모델
__02 지식 기반 모델
__03 전문가 시스템
__04 추천 엔진
Chapter 3 오토마톤과 인공 생명 프로그램
__01 인공 생명 시뮬레이션
__02 유한 오토마톤
__03 마르코프 모델
__04 상태 기반 에이전트
Chapter 4 가중치와 최적해 탐색
__01 선형 문제와 비선형 문제
__02 회귀분석
__03 가중 회귀분석
__04 유사도
__05 텐서플로를 이용한 선형 회귀 예제
Chapter 5 가중치와 최적화 프로그램
__01 그래프 이론
__02 그래프 탐색과 최적화
__03 유전 알고리즘
__04 신경망
__05 텐서플로를 이용한 신경망 만들기 예제
Chapter 6 통계 기반 머신러닝 1 - 확률분포와 모델링
__01 통계 모델과 확률분포
__02 베이즈 통계학과 베이즈 추론
__03 마르코프 연쇄 몬테카를로 방법
__04 은닉 마르코프 모델과 베이즈 네트워크
Chapter 7 통계 기반 머신러닝 2 - 자율 학습과 지도 학습
__01 자율 학습
__02 지도 학습
__03 텐서플로를 이용한 K-평균 예제
Chapter 8 강화 학습과 분산 인공지능
__01 앙상블 학습
__02 강화 학습
__03 전이 학습
__04 분산 인공지능
Chapter 9 딥러닝
__01 신경망의 다층화
__02 제한 볼츠만 머신
__03 심층 신경망
__04 합성곱 신경망(CNN)
__05 순환 신경망(RNN)
__06 텐서플로를 이용한 오토인코더 예제
__07 텐서플로를 이용한 합성곱 신경망 예제
Chapter 10 이미지와 음성 패턴 인식
__01 패턴 인식
__02 특징 추출 방법
__03 이미지 인식
__04 음성 인식
__05 텐서플로를 이용한 GAN 구현하기
Chapter 11 자연어 처리와 머신러닝
__01 문장 구조 이해
__02 지식 습득과 통계 의미론
__03 구조 분석
__04 텍스트 생성
Chapter 12 지식 표현과 데이터 구조
__01 데이터베이스
__02 검색
__03 의미 네트워크와 시맨틱 웹
Chapter 13 분산 컴퓨팅
__01 분산 컴퓨팅과 병렬 컴퓨팅
__02 분산 컴퓨팅 하드웨어 환경
__03 분산 컴퓨팅 소프트웨어 환경
__04 머신러닝과 딥러닝 개발 환경
Chapter 14 빅데이터와 사물인터넷의 관계
__01 빅데이터
__02 사물인터넷과 분산 인공지능
__03 뇌 기능과 로봇
__04 메타 인지
__05 일본 인공지능 기술 동향